Source: node_modules/bson/lib/bson/long.js

  1. // Licensed under the Apache License, Version 2.0 (the "License");
  2. // you may not use this file except in compliance with the License.
  3. // You may obtain a copy of the License at
  4. //
  5. // http://www.apache.org/licenses/LICENSE-2.0
  6. //
  7. // Unless required by applicable law or agreed to in writing, software
  8. // distributed under the License is distributed on an "AS IS" BASIS,
  9. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. // See the License for the specific language governing permissions and
  11. // limitations under the License.
  12. //
  13. // Copyright 2009 Google Inc. All Rights Reserved
  14. /**
  15. * Defines a Long class for representing a 64-bit two's-complement
  16. * integer value, which faithfully simulates the behavior of a Java "Long". This
  17. * implementation is derived from LongLib in GWT.
  18. *
  19. * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
  20. * values as *signed* integers. See the from* functions below for more
  21. * convenient ways of constructing Longs.
  22. *
  23. * The internal representation of a Long is the two given signed, 32-bit values.
  24. * We use 32-bit pieces because these are the size of integers on which
  25. * Javascript performs bit-operations. For operations like addition and
  26. * multiplication, we split each number into 16-bit pieces, which can easily be
  27. * multiplied within Javascript's floating-point representation without overflow
  28. * or change in sign.
  29. *
  30. * In the algorithms below, we frequently reduce the negative case to the
  31. * positive case by negating the input(s) and then post-processing the result.
  32. * Note that we must ALWAYS check specially whether those values are MIN_VALUE
  33. * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
  34. * a positive number, it overflows back into a negative). Not handling this
  35. * case would often result in infinite recursion.
  36. *
  37. * @class
  38. * @param {number} low the low (signed) 32 bits of the Long.
  39. * @param {number} high the high (signed) 32 bits of the Long.
  40. * @return {Long}
  41. */
  42. function Long(low, high) {
  43. if (!(this instanceof Long)) return new Long(low, high);
  44. this._bsontype = 'Long';
  45. /**
  46. * @type {number}
  47. * @ignore
  48. */
  49. this.low_ = low | 0; // force into 32 signed bits.
  50. /**
  51. * @type {number}
  52. * @ignore
  53. */
  54. this.high_ = high | 0; // force into 32 signed bits.
  55. }
  56. /**
  57. * Return the int value.
  58. *
  59. * @method
  60. * @return {number} the value, assuming it is a 32-bit integer.
  61. */
  62. Long.prototype.toInt = function() {
  63. return this.low_;
  64. };
  65. /**
  66. * Return the Number value.
  67. *
  68. * @method
  69. * @return {number} the closest floating-point representation to this value.
  70. */
  71. Long.prototype.toNumber = function() {
  72. return this.high_ * Long.TWO_PWR_32_DBL_ + this.getLowBitsUnsigned();
  73. };
  74. /** Converts the Long to a BigInt (arbitrary precision). */
  75. Long.prototype.toBigInt = function () {
  76. return BigInt(this.toString());
  77. }
  78. /**
  79. * Return the JSON value.
  80. *
  81. * @method
  82. * @return {string} the JSON representation.
  83. */
  84. Long.prototype.toJSON = function() {
  85. return this.toString();
  86. };
  87. /**
  88. * Return the String value.
  89. *
  90. * @method
  91. * @param {number} [opt_radix] the radix in which the text should be written.
  92. * @return {string} the textual representation of this value.
  93. */
  94. Long.prototype.toString = function(opt_radix) {
  95. var radix = opt_radix || 10;
  96. if (radix < 2 || 36 < radix) {
  97. throw Error('radix out of range: ' + radix);
  98. }
  99. if (this.isZero()) {
  100. return '0';
  101. }
  102. if (this.isNegative()) {
  103. if (this.equals(Long.MIN_VALUE)) {
  104. // We need to change the Long value before it can be negated, so we remove
  105. // the bottom-most digit in this base and then recurse to do the rest.
  106. var radixLong = Long.fromNumber(radix);
  107. var div = this.div(radixLong);
  108. var rem = div.multiply(radixLong).subtract(this);
  109. return div.toString(radix) + rem.toInt().toString(radix);
  110. } else {
  111. return '-' + this.negate().toString(radix);
  112. }
  113. }
  114. // Do several (6) digits each time through the loop, so as to
  115. // minimize the calls to the very expensive emulated div.
  116. var radixToPower = Long.fromNumber(Math.pow(radix, 6));
  117. rem = this;
  118. var result = '';
  119. while (!rem.isZero()) {
  120. var remDiv = rem.div(radixToPower);
  121. var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
  122. var digits = intval.toString(radix);
  123. rem = remDiv;
  124. if (rem.isZero()) {
  125. return digits + result;
  126. } else {
  127. while (digits.length < 6) {
  128. digits = '0' + digits;
  129. }
  130. result = '' + digits + result;
  131. }
  132. }
  133. };
  134. /**
  135. * Return the high 32-bits value.
  136. *
  137. * @method
  138. * @return {number} the high 32-bits as a signed value.
  139. */
  140. Long.prototype.getHighBits = function() {
  141. return this.high_;
  142. };
  143. /**
  144. * Return the low 32-bits value.
  145. *
  146. * @method
  147. * @return {number} the low 32-bits as a signed value.
  148. */
  149. Long.prototype.getLowBits = function() {
  150. return this.low_;
  151. };
  152. /**
  153. * Return the low unsigned 32-bits value.
  154. *
  155. * @method
  156. * @return {number} the low 32-bits as an unsigned value.
  157. */
  158. Long.prototype.getLowBitsUnsigned = function() {
  159. return this.low_ >= 0 ? this.low_ : Long.TWO_PWR_32_DBL_ + this.low_;
  160. };
  161. /**
  162. * Returns the number of bits needed to represent the absolute value of this Long.
  163. *
  164. * @method
  165. * @return {number} Returns the number of bits needed to represent the absolute value of this Long.
  166. */
  167. Long.prototype.getNumBitsAbs = function() {
  168. if (this.isNegative()) {
  169. if (this.equals(Long.MIN_VALUE)) {
  170. return 64;
  171. } else {
  172. return this.negate().getNumBitsAbs();
  173. }
  174. } else {
  175. var val = this.high_ !== 0 ? this.high_ : this.low_;
  176. for (var bit = 31; bit > 0; bit--) {
  177. if ((val & (1 << bit)) !== 0) {
  178. break;
  179. }
  180. }
  181. return this.high_ !== 0 ? bit + 33 : bit + 1;
  182. }
  183. };
  184. /**
  185. * Return whether this value is zero.
  186. *
  187. * @method
  188. * @return {boolean} whether this value is zero.
  189. */
  190. Long.prototype.isZero = function() {
  191. return this.high_ === 0 && this.low_ === 0;
  192. };
  193. /**
  194. * Return whether this value is negative.
  195. *
  196. * @method
  197. * @return {boolean} whether this value is negative.
  198. */
  199. Long.prototype.isNegative = function() {
  200. return this.high_ < 0;
  201. };
  202. /**
  203. * Return whether this value is odd.
  204. *
  205. * @method
  206. * @return {boolean} whether this value is odd.
  207. */
  208. Long.prototype.isOdd = function() {
  209. return (this.low_ & 1) === 1;
  210. };
  211. /**
  212. * Return whether this Long equals the other
  213. *
  214. * @method
  215. * @param {Long} other Long to compare against.
  216. * @return {boolean} whether this Long equals the other
  217. */
  218. Long.prototype.equals = function(other) {
  219. return this.high_ === other.high_ && this.low_ === other.low_;
  220. };
  221. /**
  222. * Return whether this Long does not equal the other.
  223. *
  224. * @method
  225. * @param {Long} other Long to compare against.
  226. * @return {boolean} whether this Long does not equal the other.
  227. */
  228. Long.prototype.notEquals = function(other) {
  229. return this.high_ !== other.high_ || this.low_ !== other.low_;
  230. };
  231. /**
  232. * Return whether this Long is less than the other.
  233. *
  234. * @method
  235. * @param {Long} other Long to compare against.
  236. * @return {boolean} whether this Long is less than the other.
  237. */
  238. Long.prototype.lessThan = function(other) {
  239. return this.compare(other) < 0;
  240. };
  241. /**
  242. * Return whether this Long is less than or equal to the other.
  243. *
  244. * @method
  245. * @param {Long} other Long to compare against.
  246. * @return {boolean} whether this Long is less than or equal to the other.
  247. */
  248. Long.prototype.lessThanOrEqual = function(other) {
  249. return this.compare(other) <= 0;
  250. };
  251. /**
  252. * Return whether this Long is greater than the other.
  253. *
  254. * @method
  255. * @param {Long} other Long to compare against.
  256. * @return {boolean} whether this Long is greater than the other.
  257. */
  258. Long.prototype.greaterThan = function(other) {
  259. return this.compare(other) > 0;
  260. };
  261. /**
  262. * Return whether this Long is greater than or equal to the other.
  263. *
  264. * @method
  265. * @param {Long} other Long to compare against.
  266. * @return {boolean} whether this Long is greater than or equal to the other.
  267. */
  268. Long.prototype.greaterThanOrEqual = function(other) {
  269. return this.compare(other) >= 0;
  270. };
  271. /**
  272. * Compares this Long with the given one.
  273. *
  274. * @method
  275. * @param {Long} other Long to compare against.
  276. * @return {boolean} 0 if they are the same, 1 if the this is greater, and -1 if the given one is greater.
  277. */
  278. Long.prototype.compare = function(other) {
  279. if (this.equals(other)) {
  280. return 0;
  281. }
  282. var thisNeg = this.isNegative();
  283. var otherNeg = other.isNegative();
  284. if (thisNeg && !otherNeg) {
  285. return -1;
  286. }
  287. if (!thisNeg && otherNeg) {
  288. return 1;
  289. }
  290. // at this point, the signs are the same, so subtraction will not overflow
  291. if (this.subtract(other).isNegative()) {
  292. return -1;
  293. } else {
  294. return 1;
  295. }
  296. };
  297. /**
  298. * The negation of this value.
  299. *
  300. * @method
  301. * @return {Long} the negation of this value.
  302. */
  303. Long.prototype.negate = function() {
  304. if (this.equals(Long.MIN_VALUE)) {
  305. return Long.MIN_VALUE;
  306. } else {
  307. return this.not().add(Long.ONE);
  308. }
  309. };
  310. /**
  311. * Returns the sum of this and the given Long.
  312. *
  313. * @method
  314. * @param {Long} other Long to add to this one.
  315. * @return {Long} the sum of this and the given Long.
  316. */
  317. Long.prototype.add = function(other) {
  318. // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
  319. var a48 = this.high_ >>> 16;
  320. var a32 = this.high_ & 0xffff;
  321. var a16 = this.low_ >>> 16;
  322. var a00 = this.low_ & 0xffff;
  323. var b48 = other.high_ >>> 16;
  324. var b32 = other.high_ & 0xffff;
  325. var b16 = other.low_ >>> 16;
  326. var b00 = other.low_ & 0xffff;
  327. var c48 = 0,
  328. c32 = 0,
  329. c16 = 0,
  330. c00 = 0;
  331. c00 += a00 + b00;
  332. c16 += c00 >>> 16;
  333. c00 &= 0xffff;
  334. c16 += a16 + b16;
  335. c32 += c16 >>> 16;
  336. c16 &= 0xffff;
  337. c32 += a32 + b32;
  338. c48 += c32 >>> 16;
  339. c32 &= 0xffff;
  340. c48 += a48 + b48;
  341. c48 &= 0xffff;
  342. return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
  343. };
  344. /**
  345. * Returns the difference of this and the given Long.
  346. *
  347. * @method
  348. * @param {Long} other Long to subtract from this.
  349. * @return {Long} the difference of this and the given Long.
  350. */
  351. Long.prototype.subtract = function(other) {
  352. return this.add(other.negate());
  353. };
  354. /**
  355. * Returns the product of this and the given Long.
  356. *
  357. * @method
  358. * @param {Long} other Long to multiply with this.
  359. * @return {Long} the product of this and the other.
  360. */
  361. Long.prototype.multiply = function(other) {
  362. if (this.isZero()) {
  363. return Long.ZERO;
  364. } else if (other.isZero()) {
  365. return Long.ZERO;
  366. }
  367. if (this.equals(Long.MIN_VALUE)) {
  368. return other.isOdd() ? Long.MIN_VALUE : Long.ZERO;
  369. } else if (other.equals(Long.MIN_VALUE)) {
  370. return this.isOdd() ? Long.MIN_VALUE : Long.ZERO;
  371. }
  372. if (this.isNegative()) {
  373. if (other.isNegative()) {
  374. return this.negate().multiply(other.negate());
  375. } else {
  376. return this.negate()
  377. .multiply(other)
  378. .negate();
  379. }
  380. } else if (other.isNegative()) {
  381. return this.multiply(other.negate()).negate();
  382. }
  383. // If both Longs are small, use float multiplication
  384. if (this.lessThan(Long.TWO_PWR_24_) && other.lessThan(Long.TWO_PWR_24_)) {
  385. return Long.fromNumber(this.toNumber() * other.toNumber());
  386. }
  387. // Divide each Long into 4 chunks of 16 bits, and then add up 4x4 products.
  388. // We can skip products that would overflow.
  389. var a48 = this.high_ >>> 16;
  390. var a32 = this.high_ & 0xffff;
  391. var a16 = this.low_ >>> 16;
  392. var a00 = this.low_ & 0xffff;
  393. var b48 = other.high_ >>> 16;
  394. var b32 = other.high_ & 0xffff;
  395. var b16 = other.low_ >>> 16;
  396. var b00 = other.low_ & 0xffff;
  397. var c48 = 0,
  398. c32 = 0,
  399. c16 = 0,
  400. c00 = 0;
  401. c00 += a00 * b00;
  402. c16 += c00 >>> 16;
  403. c00 &= 0xffff;
  404. c16 += a16 * b00;
  405. c32 += c16 >>> 16;
  406. c16 &= 0xffff;
  407. c16 += a00 * b16;
  408. c32 += c16 >>> 16;
  409. c16 &= 0xffff;
  410. c32 += a32 * b00;
  411. c48 += c32 >>> 16;
  412. c32 &= 0xffff;
  413. c32 += a16 * b16;
  414. c48 += c32 >>> 16;
  415. c32 &= 0xffff;
  416. c32 += a00 * b32;
  417. c48 += c32 >>> 16;
  418. c32 &= 0xffff;
  419. c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
  420. c48 &= 0xffff;
  421. return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
  422. };
  423. /**
  424. * Returns this Long divided by the given one.
  425. *
  426. * @method
  427. * @param {Long} other Long by which to divide.
  428. * @return {Long} this Long divided by the given one.
  429. */
  430. Long.prototype.div = function(other) {
  431. if (other.isZero()) {
  432. throw Error('division by zero');
  433. } else if (this.isZero()) {
  434. return Long.ZERO;
  435. }
  436. if (this.equals(Long.MIN_VALUE)) {
  437. if (other.equals(Long.ONE) || other.equals(Long.NEG_ONE)) {
  438. return Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
  439. } else if (other.equals(Long.MIN_VALUE)) {
  440. return Long.ONE;
  441. } else {
  442. // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
  443. var halfThis = this.shiftRight(1);
  444. var approx = halfThis.div(other).shiftLeft(1);
  445. if (approx.equals(Long.ZERO)) {
  446. return other.isNegative() ? Long.ONE : Long.NEG_ONE;
  447. } else {
  448. var rem = this.subtract(other.multiply(approx));
  449. var result = approx.add(rem.div(other));
  450. return result;
  451. }
  452. }
  453. } else if (other.equals(Long.MIN_VALUE)) {
  454. return Long.ZERO;
  455. }
  456. if (this.isNegative()) {
  457. if (other.isNegative()) {
  458. return this.negate().div(other.negate());
  459. } else {
  460. return this.negate()
  461. .div(other)
  462. .negate();
  463. }
  464. } else if (other.isNegative()) {
  465. return this.div(other.negate()).negate();
  466. }
  467. // Repeat the following until the remainder is less than other: find a
  468. // floating-point that approximates remainder / other *from below*, add this
  469. // into the result, and subtract it from the remainder. It is critical that
  470. // the approximate value is less than or equal to the real value so that the
  471. // remainder never becomes negative.
  472. var res = Long.ZERO;
  473. rem = this;
  474. while (rem.greaterThanOrEqual(other)) {
  475. // Approximate the result of division. This may be a little greater or
  476. // smaller than the actual value.
  477. approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
  478. // We will tweak the approximate result by changing it in the 48-th digit or
  479. // the smallest non-fractional digit, whichever is larger.
  480. var log2 = Math.ceil(Math.log(approx) / Math.LN2);
  481. var delta = log2 <= 48 ? 1 : Math.pow(2, log2 - 48);
  482. // Decrease the approximation until it is smaller than the remainder. Note
  483. // that if it is too large, the product overflows and is negative.
  484. var approxRes = Long.fromNumber(approx);
  485. var approxRem = approxRes.multiply(other);
  486. while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
  487. approx -= delta;
  488. approxRes = Long.fromNumber(approx);
  489. approxRem = approxRes.multiply(other);
  490. }
  491. // We know the answer can't be zero... and actually, zero would cause
  492. // infinite recursion since we would make no progress.
  493. if (approxRes.isZero()) {
  494. approxRes = Long.ONE;
  495. }
  496. res = res.add(approxRes);
  497. rem = rem.subtract(approxRem);
  498. }
  499. return res;
  500. };
  501. /**
  502. * Returns this Long modulo the given one.
  503. *
  504. * @method
  505. * @param {Long} other Long by which to mod.
  506. * @return {Long} this Long modulo the given one.
  507. */
  508. Long.prototype.modulo = function(other) {
  509. return this.subtract(this.div(other).multiply(other));
  510. };
  511. /**
  512. * The bitwise-NOT of this value.
  513. *
  514. * @method
  515. * @return {Long} the bitwise-NOT of this value.
  516. */
  517. Long.prototype.not = function() {
  518. return Long.fromBits(~this.low_, ~this.high_);
  519. };
  520. /**
  521. * Returns the bitwise-AND of this Long and the given one.
  522. *
  523. * @method
  524. * @param {Long} other the Long with which to AND.
  525. * @return {Long} the bitwise-AND of this and the other.
  526. */
  527. Long.prototype.and = function(other) {
  528. return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_);
  529. };
  530. /**
  531. * Returns the bitwise-OR of this Long and the given one.
  532. *
  533. * @method
  534. * @param {Long} other the Long with which to OR.
  535. * @return {Long} the bitwise-OR of this and the other.
  536. */
  537. Long.prototype.or = function(other) {
  538. return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_);
  539. };
  540. /**
  541. * Returns the bitwise-XOR of this Long and the given one.
  542. *
  543. * @method
  544. * @param {Long} other the Long with which to XOR.
  545. * @return {Long} the bitwise-XOR of this and the other.
  546. */
  547. Long.prototype.xor = function(other) {
  548. return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
  549. };
  550. /**
  551. * Returns this Long with bits shifted to the left by the given amount.
  552. *
  553. * @method
  554. * @param {number} numBits the number of bits by which to shift.
  555. * @return {Long} this shifted to the left by the given amount.
  556. */
  557. Long.prototype.shiftLeft = function(numBits) {
  558. numBits &= 63;
  559. if (numBits === 0) {
  560. return this;
  561. } else {
  562. var low = this.low_;
  563. if (numBits < 32) {
  564. var high = this.high_;
  565. return Long.fromBits(low << numBits, (high << numBits) | (low >>> (32 - numBits)));
  566. } else {
  567. return Long.fromBits(0, low << (numBits - 32));
  568. }
  569. }
  570. };
  571. /**
  572. * Returns this Long with bits shifted to the right by the given amount.
  573. *
  574. * @method
  575. * @param {number} numBits the number of bits by which to shift.
  576. * @return {Long} this shifted to the right by the given amount.
  577. */
  578. Long.prototype.shiftRight = function(numBits) {
  579. numBits &= 63;
  580. if (numBits === 0) {
  581. return this;
  582. } else {
  583. var high = this.high_;
  584. if (numBits < 32) {
  585. var low = this.low_;
  586. return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >> numBits);
  587. } else {
  588. return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1);
  589. }
  590. }
  591. };
  592. /**
  593. * Returns this Long with bits shifted to the right by the given amount, with the new top bits matching the current sign bit.
  594. *
  595. * @method
  596. * @param {number} numBits the number of bits by which to shift.
  597. * @return {Long} this shifted to the right by the given amount, with zeros placed into the new leading bits.
  598. */
  599. Long.prototype.shiftRightUnsigned = function(numBits) {
  600. numBits &= 63;
  601. if (numBits === 0) {
  602. return this;
  603. } else {
  604. var high = this.high_;
  605. if (numBits < 32) {
  606. var low = this.low_;
  607. return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
  608. } else if (numBits === 32) {
  609. return Long.fromBits(high, 0);
  610. } else {
  611. return Long.fromBits(high >>> (numBits - 32), 0);
  612. }
  613. }
  614. };
  615. /**
  616. * Returns a Long representing the given (32-bit) integer value.
  617. *
  618. * @method
  619. * @param {number} value the 32-bit integer in question.
  620. * @return {Long} the corresponding Long value.
  621. */
  622. Long.fromInt = function(value) {
  623. if (-128 <= value && value < 128) {
  624. var cachedObj = Long.INT_CACHE_[value];
  625. if (cachedObj) {
  626. return cachedObj;
  627. }
  628. }
  629. var obj = new Long(value | 0, value < 0 ? -1 : 0);
  630. if (-128 <= value && value < 128) {
  631. Long.INT_CACHE_[value] = obj;
  632. }
  633. return obj;
  634. };
  635. /**
  636. * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
  637. *
  638. * @method
  639. * @param {number} value the number in question.
  640. * @return {Long} the corresponding Long value.
  641. */
  642. Long.fromNumber = function(value) {
  643. if (isNaN(value) || !isFinite(value)) {
  644. return Long.ZERO;
  645. } else if (value <= -Long.TWO_PWR_63_DBL_) {
  646. return Long.MIN_VALUE;
  647. } else if (value + 1 >= Long.TWO_PWR_63_DBL_) {
  648. return Long.MAX_VALUE;
  649. } else if (value < 0) {
  650. return Long.fromNumber(-value).negate();
  651. } else {
  652. return new Long((value % Long.TWO_PWR_32_DBL_) | 0, (value / Long.TWO_PWR_32_DBL_) | 0);
  653. }
  654. };
  655. /**
  656. * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
  657. * @param {bigint} value - The number in question
  658. * @returns {Long} The corresponding Long value
  659. */
  660. Long.fromBigInt = function(value) {
  661. return Long.fromString(value.toString(10), 10);
  662. }
  663. /**
  664. * Returns a Long representing the 64-bit integer that comes by concatenating the given high and low bits. Each is assumed to use 32 bits.
  665. *
  666. * @method
  667. * @param {number} lowBits the low 32-bits.
  668. * @param {number} highBits the high 32-bits.
  669. * @return {Long} the corresponding Long value.
  670. */
  671. Long.fromBits = function(lowBits, highBits) {
  672. return new Long(lowBits, highBits);
  673. };
  674. /**
  675. * Returns a Long representation of the given string, written using the given radix.
  676. *
  677. * @method
  678. * @param {string} str the textual representation of the Long.
  679. * @param {number} opt_radix the radix in which the text is written.
  680. * @return {Long} the corresponding Long value.
  681. */
  682. Long.fromString = function(str, opt_radix) {
  683. if (str.length === 0) {
  684. throw Error('number format error: empty string');
  685. }
  686. var radix = opt_radix || 10;
  687. if (radix < 2 || 36 < radix) {
  688. throw Error('radix out of range: ' + radix);
  689. }
  690. if (str.charAt(0) === '-') {
  691. return Long.fromString(str.substring(1), radix).negate();
  692. } else if (str.indexOf('-') >= 0) {
  693. throw Error('number format error: interior "-" character: ' + str);
  694. }
  695. // Do several (8) digits each time through the loop, so as to
  696. // minimize the calls to the very expensive emulated div.
  697. var radixToPower = Long.fromNumber(Math.pow(radix, 8));
  698. var result = Long.ZERO;
  699. for (var i = 0; i < str.length; i += 8) {
  700. var size = Math.min(8, str.length - i);
  701. var value = parseInt(str.substring(i, i + size), radix);
  702. if (size < 8) {
  703. var power = Long.fromNumber(Math.pow(radix, size));
  704. result = result.multiply(power).add(Long.fromNumber(value));
  705. } else {
  706. result = result.multiply(radixToPower);
  707. result = result.add(Long.fromNumber(value));
  708. }
  709. }
  710. return result;
  711. };
  712. // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
  713. // from* methods on which they depend.
  714. /**
  715. * A cache of the Long representations of small integer values.
  716. * @type {Object}
  717. * @ignore
  718. */
  719. Long.INT_CACHE_ = {};
  720. // NOTE: the compiler should inline these constant values below and then remove
  721. // these variables, so there should be no runtime penalty for these.
  722. /**
  723. * Number used repeated below in calculations. This must appear before the
  724. * first call to any from* function below.
  725. * @type {number}
  726. * @ignore
  727. */
  728. Long.TWO_PWR_16_DBL_ = 1 << 16;
  729. /**
  730. * @type {number}
  731. * @ignore
  732. */
  733. Long.TWO_PWR_24_DBL_ = 1 << 24;
  734. /**
  735. * @type {number}
  736. * @ignore
  737. */
  738. Long.TWO_PWR_32_DBL_ = Long.TWO_PWR_16_DBL_ * Long.TWO_PWR_16_DBL_;
  739. /**
  740. * @type {number}
  741. * @ignore
  742. */
  743. Long.TWO_PWR_31_DBL_ = Long.TWO_PWR_32_DBL_ / 2;
  744. /**
  745. * @type {number}
  746. * @ignore
  747. */
  748. Long.TWO_PWR_48_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_16_DBL_;
  749. /**
  750. * @type {number}
  751. * @ignore
  752. */
  753. Long.TWO_PWR_64_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_32_DBL_;
  754. /**
  755. * @type {number}
  756. * @ignore
  757. */
  758. Long.TWO_PWR_63_DBL_ = Long.TWO_PWR_64_DBL_ / 2;
  759. /** @type {Long} */
  760. Long.ZERO = Long.fromInt(0);
  761. /** @type {Long} */
  762. Long.ONE = Long.fromInt(1);
  763. /** @type {Long} */
  764. Long.NEG_ONE = Long.fromInt(-1);
  765. /** @type {Long} */
  766. Long.MAX_VALUE = Long.fromBits(0xffffffff | 0, 0x7fffffff | 0);
  767. /** @type {Long} */
  768. Long.MIN_VALUE = Long.fromBits(0, 0x80000000 | 0);
  769. /**
  770. * @type {Long}
  771. * @ignore
  772. */
  773. Long.TWO_PWR_24_ = Long.fromInt(1 << 24);
  774. /**
  775. * Expose.
  776. */
  777. module.exports = Long;
  778. module.exports.Long = Long;